<div dir="ltr"><br clear="all"><div><br></div><div><br></div><div><br></div><div>NHERI LEHIGH Seminar Seris</div><div><br></div><div><br></div><div><h3 style="margin:0in 0in 0.0001pt;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;font-size:13.5pt;font-family:"Times New Roman",serif"><span style="font-size:10.5pt;font-family:"Helvetica Neue";color:rgb(51,51,51)">Abstract:</span></h3>

<p style="margin:0in 0in 7.5pt;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;box-sizing:border-box;font-size:12pt;font-family:"Times New Roman",serif"><span style="font-size:10.5pt;font-family:"Helvetica Neue";color:rgb(51,51,51)">Condition evaluation of large-scale
structures, termed mesoscale structures (e.g. civil, aerospace, and energy
structures) is difficult due to their large size and complex geometries.
Additionally, there exists a lack of economic and scalable sensing technologies
that are capable of detecting, localizing, and quantifying local faults over a
structures global area. A solution to this local-global problem is the
deployment of an inexpensive dense sensor network that is capable of detecting
and localizing damage over a structure’s global area.</span></p><p style="margin:0in 0in 7.5pt;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial;box-sizing:border-box;font-size:12pt;font-family:"Times New Roman",serif"><span style="color:rgb(51,51,51);font-family:"Helvetica Neue";font-size:10.5pt">This work will present advancements in two such dense sensor networks.
The first consists of a sensing skin developed from a flexible capacitor that
is mounted externally onto the structure. When deployed in a dense sensor
network configuration, these large area sensors are capable of covering large
surfaces at low cost and can monitor both strain- and crack-induced damages.
The second sensing technology consists of smart-cementitious material doped
with multi-wall carbon nanotubes, which has been demonstrated to be suitable
for monitoring its own deformations (strain) and damage state (cracks).
Integrated into a structure, this smart cementitious material can be used for
detecting damage or strain through the monitoring of its electrical properties.</span><span style="font-size:10.5pt;font-family:"Helvetica Neue";color:rgb(51,51,51)"> </span></p></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Marti LaChance<div><a href="mailto:nheri.communications@gmail.com" target="_blank">nheri.communications@gmail.com</a></div></div></div></div>